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Singular Risk-Neutral Valuation Equations

Pricing Financial Derivatives

• In valuing financial derivatives it is obviously preferable to have

closed-form - or as near as possible to closed-form - expressions

for the price of the security.

• This is the reason for the success of affine models. The price

can be found by solving a system of ODEs and then inverting

Fourier transforms

(see, [Duffie, Filipovich, and Schachermayer (2003)]).

• Many pricing problems, including some classical ones, cannot be

formulated by affine models:

The Arithmetic Asian option in the Heston model

The Hobson-Rogers model

The Bates model with downward jumps in the volatility
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Singular Risk-Neutral Valuation Equations

The Problem

• When the problem at hand does not fit in the class of affine

models, the no-arbitrage price can be computed as the solution of

(P)

 ∂tu(t, x) + Lu(t, x)− c(x)u(t, x) = f(t, x), (t, x) ∈ (0, T )×D,
u(T, x) = φ(x), x ∈ D,

Lg(x) = ∇g(x)b(x)+
1

2
tr
(
∇2g(x)σ(x)σT (x)

)
+

∫
D

[g(z)− g(x)]m(x, dz).

• D ⊂ IRd, b is the drift of the state process Xt, a = σσ> is the

diffusion matrix, c is the ”discount rate function”;

• φ is the payoff and f is a continuous yield or a running cost;

• m includes the jump intensity and probability distribution of Xt

after the jump.
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Singular Risk-Neutral Valuation Equations

The valuation equation may exhibit, often simultaneously, several

indeterminacies and degeneracies such as:

• The diffusion matrix a is singular on the boundary of D, or is

even identically zero in some direction: The former singularity

arises in some stochastic volatility models, like the Heston model;

the latter is the case of Asian options, of some path dependent

volatility models, like the Hobson-Rogers model, or of models

where some components are pure jump.

• The drift b and the matrix σ are not Lipschitz continuous up to

the boundary of D: This occurs, e.g., whenever some components

are square root diffusions (CIR or Heston models).

• The coefficients b and a are fast growing near the boundary or at

infinity: The latter occurs, e.g., in Asian option pricing with the

Heston model and in the Hobson-Rogers model.
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Singular Risk-Neutral Valuation Equations

. . . Continue

• The jump intensity is not bounded: This occurs, e.g., in some

generalizations of affine models like the Bates model with

downward jumps of the volatility.

• The state space D has a boundary but no boundary conditions

are specified: This is the case in most models where D has a

boundary.
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Singular Risk-Neutral Valuation Equations

Examples

I Asian option pricing: The payoff of an Asian option is a

function of

1

T

∫ T

0

St dt (Arithmetic)
1

T

∫ T

0

logSt dt, (Geometric)

In addition the payoff may depend on ST as well.

The standard approach is to introduce the process At satisfying,

dAt = St dt, or dAt = logSt dt

• At is purely deterministic, given St, the last row and the last

column of the diffusion matrix σσ> are always identically zero

• The theory of classical solutions of PDE’s does not apply, nor does,

in general, the standard theory of viscosity solutions.
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Singular Risk-Neutral Valuation Equations

I The Heston model:

In the Heston model the asset price, St, and the stochastic volatility,

Vt, follow dSt = rSt dt+
√
VtSt dW

1
t ,

dVt = β(v − Vt) dt+ σ0
√
Vt

[
ρdW 1

t +
√

1− ρ2dW 2
t

]
.

where

• W 1 and W 2 are independent Brownian motions;

• r is a constant interest rate and ρ ∈ [−1, 1].

• β, v and σ0 are positive parameters, satisfying the Feller condition

(2βv > σ2
0).

a(S, V ) =

 V S2 σ0ρV S

σ0ρV S σ2
0V

 , b(S, V ) =

 rS

β(v − V )

 .
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Singular Risk-Neutral Valuation Equations

Viscosity Solutions

• In the presence of these features, existence, uniqueness or

regularity of solutions may

• It is common practice in mathematical finance to develop

numerical

• The classical theory of Sobolev spaces applies only if the diffusion

matrix a is uniformly nonsingular in the state space D.

• In contrast the theory of viscosity solutions allows to deal with

singular diffusion matrices.

• Viscosity solutions are continuous functions (a priori not

differentiable) and are well suited to be computed
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Singular Risk-Neutral Valuation Equations

• Originally developed for linear and nonlinear Partial Differential

Equations (Crandall, Ishii and Lions (1992), Bardi and Capuzzo

Dolcetta (1997), and Fleming and Soner (1993)), the theory of

viscosity solutions has later been extended to (linear and

nonlinear) Partial Integro-Differential Equations (e.g. Alvarez

and Tourin (1996), Pham (1998), Jakobsen and Karlsen

(2005-2006) , Alibaud (2007), and references therein).

• The existing results are not sufficient to deal with the above

described features, even in the linear case we are considering

here, and even in the purely differential case.

• Previous works assume globally Lipschitz coefficients with

sublinear growth or they assume bounded, uniformly continuous

coefficients.

• Alvarez and Tourin consider an operator of our form with a

uniformly bounded measure m.
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Singular Risk-Neutral Valuation Equations

• Other works consider more general operators - integral operators

corresponding to Levy jump processes, or even more general non

local operators.

• However, when these operators are specialized to our form, the

measure m is assumed to be uniformly bounded.

• Di Francesco, Pascucci, Polidoro (2006), Pascucci (2008), Frentz,

Nyström and Pascucci (2009) investigate the purely differential

degenerate valuation equations with a special structure that

ensures that the equation is hypoelliptic.

• There is a well developed literature on PDE methods with

Sobolev and Hölder spaces suitably defined, which covers at least

the case of Heston, Asian and path dependent models in the

purely diffusive case, for instance: Bramanti, Cerutti, Manfredini

(1996), Lunardi (1998), Di Francesco, Polidoro (2006).
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Singular Risk-Neutral Valuation Equations

Remark on the structure of a

Remark: If there exists λ > 0 and a n× n matrix-valued function

A(x), n ≤ d such that

a(x) =

 A(x) 0

0 0

 , λ−1|η|2 < 〈A(x)η, η〉 < λ|η|2, ∀ η ∈ Rn

that is a is uniformly positive definite only on a linear subspace of Rd

(or on the intersection of such a linear subspace with an orthant) and

identically null on its orthogonal complement, then this special

condition is not sufficient to cover the case of Geometric and

Arithmetic Asian options under the Heston model.

• In fact the specific cases of the Arithmetic Asian floating-strike

put and fixed-strike call in the Black-Scholes model are solved in

Barucci, Polidoro, Vespri (2001) with a different approach.
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Singular Risk-Neutral Valuation Equations

• In the framework of classical solutions, Janson and Tysk (2006)

prove existence and uniqueness of the solution in D = (0; +∞)d,

assuming that σ is locally Lipschitz continuous in D, has

sublinear growth and full rank in D, but its i-th row vanishes on

the set xi = 0, for all i’s, and the Lipschitz condition does not

necessarily hold on the boundary.

• Ekström and Tysk (2010) study classical solutions of B&S

equation in SV models when the boundary may be attainable.

Precisely, the operator has the form

L =
1

2
yx2

∂2

∂x2
+ ρσ

√
yx

∂2

∂x∂y
+
σ2(y)

2

∂2

∂y2
+ β(y)

∂

∂y
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Singular Risk-Neutral Valuation Equations

• β ∈ C1+α([0,+∞)), β(0) ≥ 0.

• σ2 ∈ C1+α([0,+∞)), σ(0) = 0, σ(y) > 0 for any y > 0.

• |β(y)|+ σ(y) ≤ C(1 + y) holds for all y ≥ 0.

• The payoff function φ ∈ Cb([0,+∞)) ∩ C2([0,+∞)).

• xφ′(x) and x2φ′′(x) are bounded.

Then, the pricing problem
∂tu+ Lu = 0, in (0,+∞)2 × [0, T ),

u(t, 0, y) = φ(0),

∂tu(t, x, 0) + β(0)∂yu(t, x, 0) = 0,

u(T, x, y) = φ(x),

has a unique classical solution:

u ∈ C2,2,1((0,+∞)2 × [0, T )) ∩ C0,1,1((0,+∞)× [0,+∞)× [0, T ))
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Singular Risk-Neutral Valuation Equations

Assumptions

- D is a (possibly unbounded) starshaped open subset of Rd.

-M(D) is the space of finite Borel measures on D, endowed with the

weak convergence topology.

Assumption 1. σ : D → Rd×d and b : D → Rd are locally Lipschitz

continuous on D.

For the full integro-differential case, we assume in addition:

Assumption 2. ai,j ∈ C2(D), m : D →M(D) is continuous and

sup
x∈D

∣∣∣∣∫
D

g(z)m(x, dz)

∣∣∣∣ <∞, ∀ g ∈ Cc(D).

Remark: For d = 1, the Assumption 1 can be weakened:

σ : D → R Hölder continuous of order 1/2 on compact subsets of D.
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Singular Risk-Neutral Valuation Equations

A Structural Condition

Assumption 3 (Lyapunov type condition). There exists a

nonnegative function V ∈ C2(D), such that∫
D

V (z)m(x, dz) < +∞, LV (x) ≤ C (1 + V (x)) , ∀x ∈ D,

lim
x∈D, x→x

V (x) = +∞, ∀ x ∈ ∂D, lim
x∈D, |x|→+∞

V (x) = +∞.

This ensures that the stochastic process does not blow up in finite

time and does not reach the boundary of D.

Remarks:

• No growth condition on the coefficients is needed.

• The function V also determines the growth rate that we can

allow for the data.
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Singular Risk-Neutral Valuation Equations

Assumption 4. f ∈ C((0, T )×D), c, φ ∈ C(D). c is bounded from

below. There exists a strictly increasing function

ϕ : [0,+∞)→ [0,+∞), such that

s 7→ sϕ(s) is convex, lim
s→+∞

ϕ(s) = +∞,

(s1 + s2)ϕ(s1 + s2) ≤ C (s1ϕ(s1) + s2ϕ(s2)) , ∀ s1, s2 ≥ 0,

such that the following hold on (0, T )×D:

|f(t, x)|ϕ(|f(t, x)|) + |φ(x)|ϕ(|φ(x)|) ≤ C (1 + V (x)) .

Remarks:

• Possible choices: ϕ(s) = sα or ϕ(s) = log(s+ 1 + α), with α > 0.

• Under sublinear/subquadratic growth conditions on the

coefficients, φ and f are allowed to have polynomial growth of

order q < 2: |f(t, x)|+ |φ(x)| ≤ C(1 + |x|q).
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Singular Risk-Neutral Valuation Equations

I Arithmetic Asian floating-strike put in the Heston model: dSt = rSt dt+
√
VtSt dW

1
t ,

dVt = β(v − Vt) dt+ σ0
√
Vt

[
ρdW 1

t +
√

1− ρ2dW 2
t

]
,

φ(ST , AT ) =

(
ST −

1

T
AT

)
+

, dAt = Stdt.

• We take D = (0,∞)3 and assume that 2β v > σ2
0 . ∂tu(t, s, v, a) + Lu(t, s, v, a)− r u(t, s, v, a) = 0, in (0, T )×D,

u(T, s, v, a) = φ(s, a), in D,

Lg = rs∂sg + β(v − v) ∂vg + s ∂ag +
vs2

2
∂2sg +

σ2
0v

2
∂2vg.

The following function satisfies Assumption 3:

V (s, v, a) = − log s − log v − log a+ s log(s+ 3) + s(v + 1) + v + a.
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Singular Risk-Neutral Valuation Equations

I Geometric Asian Option in the Heston model: Zt = log(St),

vt is the volatility process, Gt =
∫ t
0
Zsds, φ(Z, v,G) = (K − eG/T )+,

dZt =
(
r − vt

2

)
dt+
√
vtdW

1
t , dvt = k(θ−vt)dt+σ

√
vtdW

2
t , v0 > 0.

∂tu+
v

2
∂2Zu+

σ2v

2
∂2vu+

(
r − v

2

)
∂Zu+ k(θ− v)∂vu+Z∂Gu− ru = 0.

D = R×]0,+∞[×R, σ =


√
v 0

0 σ
√
v

0 0

 , b =


r − v

2

k(θ − v)

Z

 .
=⇒ V (Z, v,G) = v−a + v2 + Z2 +G2, a = 2kθ

σ2 − 1 > 0 (⇐= vt > 0).

LV (Z, v,G) ≤ C(1+Z2+v2+G2)+av−a−1
[
σ2

2
(a+ 1)− kθ

]
+kθv−a

≤ C ′(1 + V (Z, v,G)).
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Singular Risk-Neutral Valuation Equations

I Jump-diffusion and stochastic volatility: Both stochastic

volatility and jumps were introduced with the goal of explaining the

volatility smile.

• Affine models allow only for nonnegative jumps of the nonnegative

components. At least in European option pricing, this is not a

problem for the asset price, as it can be viewed as the exponential of

the log-return.

• On the contrary, it seems restrictive to impose the volatility to have

only upward jumps.

• The following model is proposed in Duffie, Pan and Singleton

(2000), except that the jump distribution allows for downward jumps

in the volatility: dYt

dVt

 =

 b− 1
2Vt

β(v − Vt)

 dt+
√
Vt

 1 0

ρσ0
√

1− ρ2σ0

 dWt + dZt
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Singular Risk-Neutral Valuation Equations

. . . Z is a 2-dimensional, pure jump process with constant mean

arrival rate λ > 0 and bivariate jump distribution µ

• Jumps in the log-return alone ∼ N (m1, σ
2
1)

• Jumps in the volatility alone ∼ Γ(2, 2
v+m2

) (shifted to the left by

the value of the volatility at the moment of the jump)

• Common jumps in the log-return and the volatility ∼ Γ(2, 2
v+m2

)

(shifted to the left by the current volatility value v), and the

log-return jump follows ∼ N (m1,c + ρcv
′, σ2

1,c), conditionally on a

value v′ of the volatility jump

The state space is D = R× (0,∞), and we assume 2βv > σ2
0 .
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Singular Risk-Neutral Valuation Equations

. . . The valuation equation is ∂tu(t, y, v) + Lu(t, y, v)− r u(t, y, v) = 0, in (0, T )×D,
u(T, y, v) = (k − ey)+ , in D,

Lg = Ag + Jg

Ag(y, v) =
(
b− v

2

)
∂y g(y, v) + β(v − v) ∂v g(y, v) +

v

2
∂ 2
y g(y, v)

+
σ2
0 v

2
∂ 2
v g(y, v) +

1

2
ρ σ0 v ∂

2
yv g(y, v),

Jg(y, v) = λ

∫
R×(0,+∞)

g(y + y′, v + v′)µ ((y, v), (dy′, dv′))− λ g(y, v).

• The function

V (y, v) = y2 + v2 − log v,

satisfies Assumption 3.

21
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I Affine Models. For affine models with affine payoff more explicit

methods than solving the valuation equation are available.

I It is worth mentioning that all our assumptions are satisfied by a

conservative regular affine process whose jump measure has

finite second moment:

D = (0,+∞)d0×Rd−d0 b(x) = b0+Bx, a(x) = α0+

d0∑
h=1

xhα
h

m(x,E) = µ0({z : z + x ∈ E}) +

d0∑
h=1

xhµ
h({z : z + x ∈ E}),

∀ x ∈ D, E ∈ B(D)

The Assumption 3 is satisfied by

V (x) = |x|2 +

d0∑
i=1

(− log xi)
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Singular Risk-Neutral Valuation Equations

I SV under the structure of Tysk and Ekström (2010):

L =
1

2
yx2

∂2

∂x2
+ ρσ

√
yx

∂2

∂x∂y
+
σ2(y)

2

∂2

∂y2
+ β(y)

∂

∂y

Let y > 0 and define π ∈ C2((0,+∞)) such that

π(y) =

∫ y

y

exp

(∫ y

r

2β(η)

σ2(η)
dη

)
dr, ∀ y < y.

This is a solution of Lπ = 0 on (0, y).

• If π(y)→ +∞ as y → 0+, then

V (x, y) = x log(x+ 3)− log(x) + x(y + 1) + y + π(y),

is a Lyapunov function in the sense of Assumption 3.

• Weak regularity assumptions are needed on the coefficients β and σ

to obtain existence and uniqueness results for the viscosity solution.
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Singular Risk-Neutral Valuation Equations

THEOREM

For every probability distribution P0 on D, there exists one and only

one stochastic process X solution of the martingale problem for

(L,P0) with DL = C2c (D). X is a strong Markov process with cádlág

(right continuous with left end limits) paths in D.

Denoting by Xx the process with P0 = δx, x ∈ D, it holds, for every

T ≥ 0 and every
{
FXxt

}
-stopping time τ ,

sup
0≤t≤T

E [V (Xx
t∧τ )] ≤ CT (1 + V (x)) .
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. . . Moreover,

I Proposition. For every g ∈ C∞([0, T ]×D) such that satisfies

|g(t, x)|ϕ(|g(t, x)|) ≤ C (1 + V (x))

and for every compact set K ⊆ D,

g(t ∧ τK , Xx
t∧τK )−

∫ t∧τK

0

(∂sg + Lg) (s,Xx
s )ds, 0 ≤ t ≤ T,

is an
{
FXxt

}
-martingale, where

τK = inf {t ≥ 0 : Xx
t /∈ K or Xx

t− /∈ K}
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THEOREM 2. For every x ∈ D, let Xx the process related to

P0 = δx. Then, for every t ∈ [0, T ],

E

[ ∣∣∣∣∣φ(Xx
T−t)e

−
∫ T−t
0

c(Xxr )dr −
∫ T−t

0

f(t+ s,Xx
s )e−

∫ s
0
c(Xxr )drds

∣∣∣∣∣
]
< +∞.

u(t, x) = E

[
φ(Xx

T−t)e
−

∫ T−t
0

c(Xxr )dr −
∫ T−t

0

f(t+ s,Xx
s )e−

∫ s
0
c(Xxr )drds

]
is continuous on [0, T ]×D and is uniformly continuous on compact

subsets of D, uniformly for t ∈ [0, T ]. Moreover u is a viscosity

solution of (P), satisfying

(G) |u(t, x)|ϕ(|u(t, x)|) ≤ CT (1 + V (x)) .

THEOREM 3. ∃ only one viscosity solution of (P) satisfying (G).

I The results are presented in a paper accepted for publication in

Finance and Stochastics (2010).
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Singular Risk-Neutral Valuation Equations

=⇒ Existence of the stochastic process X:

• Step 1: For every bounded open set D′, D′ ⊆ D, we consider

the localized operator

L′ = A′ + J ′,

A′ : C2c (Rd)→ Cc(Rd), A′g(x) = χ′(x)
[
∇g(x)b(x) + 1

2 tr
(
∇2g(x)a(x)

)]
,

J ′ : C2c (Rd)→ Cc(R), J ′g(x) = χ′(x)
∫
D

[g(z)− g(x)]m(x, dz),

with χ′ ∈ C∞c (D), χ′(x) = 1 for x ∈ D′, 0 ≤ χ′ ≤ 1.

– Since a may be degenerate, standard theorems on Lévy

generators do not apply to L′ .

– Under our assumptions the martingale problem for A′ is well

posed but this is not enough to ensure that the martingale

problem for L′ is well posed (Theorem 10.3 in Ethier, Kurtz,

(1986)).
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Singular Risk-Neutral Valuation Equations

• ai,j ∈ C2(D) =⇒
the closure of A′ generates a Feller semigroup on Ĉ(Rd) (the

closure of Cc(Rd) in Cb(Rd)) =⇒
the closure of L′ generates a Feller semigroup on Ĉ(Rd) =⇒
the martingale problem for L′ is well posed

• D starshaped =⇒ D can be made into a complete, separable

metric space

=⇒ the stopped martingale problem for (L,P0, D
′) has one and

only one solution for every probability distribution P0 on D (see

Ethier and Kurtz, (1986)).
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Singular Risk-Neutral Valuation Equations

• Step 2: (using a technique developed by Has’minski, (1980))

For an increasing sequence of sets Dn ↗ D, letting Xn be the

solution of the stopped martingale problem for (L, δx, Dn) and

τn = inf {t ≥ 0 : Xn
t /∈ Dn or Xn

t− /∈ Dn} ,

P (τn ≤ t) −→ 0 =⇒ The martingale problem for (L, δx) has a

unique solution with càdlàg paths.

• Step 3: For any probability distribution P0 on D and any

solution X of the martingale problem for (L,P0), we get

P (τn ≤ t, X0 ∈ K) ≤
2 P (X0 ∈ K) [ supx∈K V (x) + Ct] eCt

n

=⇒ The martingale problem for (L,P0) has one and only one

solution with càdlàg paths .

=⇒ X is a strong Markov process (Theorems 4.2, 4.6 in Ethier

and Kurtz, (1986)).
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Singular Risk-Neutral Valuation Equations

Proof of Theorem 2:

• We use the fact that Xx is the solution of the martingale problem

for the operator L on C2c (D), rather than the semigroup property.

• This allows locally Lipschitz coefficients which satisfy general

growth conditions, and with jump diffusion processes.

• Step 1: We show that u ∈ C([0, T ]×D).

Let f be an extension of f to [0,∞)×D and Y xt =e−
∫ t
0
c(Xxr )dr,

φ(Xxk
T−tk)Y xkT−tk −

∫ T−tk

0

f(tk + s,Xxk
s )Y xks ds

L−→ φ(Xx
T−t)Y

x
T−t −

∫ T−t

0

f(t+ s,Xx
s )Y xs ds.

=⇒ The uniform integrability of random variables in the left

hand side allows to take expectations.
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Singular Risk-Neutral Valuation Equations

Step 3: We verify the definition of viscosity solution for u.

Ag(x) = ∇g(x)b(x)+
1

2
tr
(
∇2g(x)a(x)

)
, Jg(x) =

∫
D

[g(z)− g(x)]m(x, dz).

Definition (Viscosity Solution). A function u ∈ USC([0, T ]×D)

(resp. u ∈ LSC([0, T ]×D)) such that
∫
D
u(t, x) m(x, dz) <∞ for all

(t, x) ∈ [0, T ]×D is a viscosity subsolution (resp. supersolution)

of (P) if

i) for every (t, x) ∈ (0, T )×D and any test function g for P2,+u at

(t, x) (resp. P2,−u), it holds:

∂tg(t, x) +Ag(t, x) + Ju(t, x)− c(x)u(t, x) ≥ f(t, x) (resp. ≤),

ii) u(T, x) ≤ φ(x), (resp., ≥) for all x ∈ D.

A function u that is both a viscosity subsolution and a viscosity

supersolution of (P) is a viscosity solution.
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Singular Risk-Neutral Valuation Equations

. . . Notice that, for every t ∈ [0, T ), the strong Markov property of

Xx implies that

u(t+ t,Xx
t )e−

∫ t
0
c(Xxr )dr −

∫ t

0

f(s,Xx
s )e−

∫ s
0
c(Xxr )drds, 0 ≤ t ≤ T − t,

is an
{
FXxt

}
-martingale.

Suppose that for a good test function for P2,+u (t, x), with

|g(t, x)|ϕ(|g(t, x)|)| ≤ C(1 + V (x)), it holds

∂tg(t, x) +Ag(t, x) + Ju(t, x)− c(t, x)g(t, x)− f(t, x) < 0.

Therefore ∃ δ > 0 such that for (t, x) ∈ [t, t+ δ)×Bδ(x),

∂tg(t, x) + Lg(t, x)− c(t, x)g(t, x)− f(t, x) < 0.
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Set τ = inf
{
t ≥ 0 : Xx

t /∈ Bδ(x) or Xx
t− /∈ Bδ(x)

}
, then

g(t+ t ∧ τ ,Xx
t∧τ )−

∫ t∧τ

0

(∂sg + Lg) (t+ s,Xx
s )ds, 0 ≤ t ≤ T − t

is an
{
FXxt

}
-martingale. Hence

u(t, x) ≤ E
[
g(t+ τ ∧ δ,Xx

τ∧δ)e
−

∫ τ∧δ
0

c(Xxr )dr

−
∫ τ∧δ

0

f(t+ s,Xx
s )e−

∫ τ∧δ
0

c(Xxr )drds

]
=

g(t, x) + E

[∫ τ∧δ

0

(∂sg + Lg − cg − f) (t+ s,Xx
s )e−

∫ τ∧δ
0

c(Xxr )drds

]
< u(t, x). =⇒ Contradiction!

• The growth condition(G) follows from the assumptions of φ and f .
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Proof of Theorem 3 follows from a Comparison Principle: Let

u and u be respectively a viscosity sub-/super-solution of (P), both

satisfying (G). Then u(t, x) ≤ u(t, x), ∀ (t, x) ∈ [0, T ]×D.
For every β > 0, we consider the function

wβ(t, x, y) = u(t, x)− u(t, y)− β[1 + V (x) + V (y)].

The assertion follows proving that the usc envelope of

ϑβ(t) = lim
r→0+

sup
{

max(wβ(t, x, y), 0) : x, y ∈ D, |x− y| < r
}
,

is a viscosity subsolution of
(
ϑ∗β

)′
(t) = 0 in (0, T ).

I Theorems proved in [Ishii, Kobayasi (1994)] yield ϑβ(t) = 0, for

all t, β > 0.
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Regularity in the Degenerate Purely Differential Case

I Further Assumptions: 〈a(x)η, η〉 > 0 ∀ η ∈ Rn, x ∈ D, f is

locally Hölder continuous on (0, T )×D, c is locally Hölder

continuous on D.

I Theorem The viscosity solution u to (P) is a classical solution.

I Lemma Consider a cylinder H = (t1, t2)×Q with H ⊂ (0, T )×D
and let g be a continuous function on the parabolic boundary ∂pH.

Then there is a unique classical solution to the Dirichlet problem ∂tu+Au− cu = f, in H

u = g, on ∂pH

Precisely, we have u ∈ C(H) ∩ C1,2(H).

• The proof follows from classical results in Friedman (1975).
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. . . for the sake of simplicity assume f = 0. For a fixed point

(t, x) ∈ (0, T )×D and r > 0, let us consider the problem ∂tv +Av − cv = 0, in (t, t+ r)×Q
v = u, on ∂p[(t, t+ r)×Q]

where x ∈ Q, Q ⊂ D. Then the unique solution v is classical. Since

u(t+ t ∧ τ,Xx
t∧τ )e−

∫ t∧τ
0

c(Xxλ)dλ

is an {FXt }-martingale for every {FXt }-stopping time τ , we consider

the first exit time τ of (Xx
s−t)s≥t from Q and, by applying Ito’s

formula to v(t,Xx
t−t)e

−
∫ t−t
0

c(Xxλ)dλ, it is easy to see that

u(t, x) = E
[
v(τ,Xx

τ−t)e
−

∫ τ
0
c(Xxλ)dλ

]
= v(t, x).

=⇒ we deduce the regularity of the viscosity solution u
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Regularity: a Class of Strongly Degenerate PIDE’s

∃ p ∈ Rd, s.t. σ(x)T p = 0 in D. Up to a linear change of coordinates,

σ(x) =

 σ1(x)

0

 , σ1(x) ∈ Rd1×d, d1 < d.

D = D1 ×D2, b(x) =

 b1(x1, x2)

0

 , µ(x, z) = δx1

(
dz1
)
× µ2

(
x2, dz2

)
,

i.e. the stochastic process Xt is given by
(
X1
t , X

2
t

)
, where X1

t satisfies

X1
s = x1 +

∫ s

t

b1(X1
λ, X

2
λ)dτ +

∫ s

t

σ1(X1
λ, X

2
λ)dWλ,

and X2
t is a pure jump Markov process with bounded intensity the

evolution of which does not depend on the value of X1
t .
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Since D = D1 ×D2 and X2 is a pure jump process with bounded

intensity, Assumption 3 can be replaced by the following

IAssumption 3.1: ∃ V 1 ∈ C2(D1) such that

V 1(x1) ≥ 0, limx1∈D1, |x1|→+∞ V 1(x1) = +∞,
limx1→x1

0
V 1(x1) = +∞ ∀ x10 ∈ ∂D1.

LV 1(x) ≤ C
(
1 + V 1(x1)

)
, ∀ x = (x1, x2) ∈ D.

IFurther Assumptions:

• σ1(x)
(
σ1(x)

)>
is positive definite in D (but not uniformly);

• c is locally Hölder continuous;

• t ∈ (0, T ) 7→ f(t, x) is Hölder- 12 , uniformly w.r.to x ∈ D.

THEOREM 4. Under these assumptions, the (unique) viscosity

solution of (P), u(t, x1, x2), belongs to C1,2,0
(
(0, T )×D1 ×D2

)
.
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Conclusions

• We have proved existence and uniqueness of the viscosity

solution to the valuation equation for a general jump-diffusion

model with locally Lipschitz continuous coefficients.

• Our assumptions allow the diffusion matrix a = σσ> to be

singular and both σ and the drift b to loose Lipschitz continuity

at the boundary of the state space D.

. . . Our results apply to: Asian option pricing in stochastic

volatility models as well, Path-dependent volatility

models, Jump-diffusion stochastic volatility models

39


